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Abstract

Dynamic word embeddings [[1]] are a powerful tool to measure the evolution of
word semantics over time, but have not been exploited to-date due to a lack of
available software implementations. In this work, we utilized them to quantify
gender bias over time. By identifying a gender direction, we find that certain words
dramatically change their orientation along this direction in the 1960s, which could
be attributed to the Women’s Rights Movement in these years. We specifically
demonstrate shifts of gender bias over time in three corpora, proving the versatility
of dynamic word embeddings as a tool for the social sciences and humanities.

Introduction. Gender bias in word embeddings may harm their application by contributing to a
feedback loop [2] that perpetuates prejudice. Drawing the connection with stereotypes in social
science, measuring the temporal changes of gender bias is a meaningful task [3]. Garg et al. [3]] de-
scribed the bias over time resorting to other gender-neutral concepts, e.g., occupations and adjectives.
These analyses are built on temporally independent word embeddings aligned by transformations [4],
which suffers from either coarse temporal scale or noisy perturbations [3].

Dynamic word embeddings [[1], by imposing a temporal prior on the low-dimensional space, is a
powerful approach to quantifying smooth evolutions of text corpora. However this model has not
been well investigated in practice. In this work, we use it to investigate temporal changes of gender
bias, drawing an analysis by Bolukbasi et al. [2].

Dynamic word embeddings. Word2vec [6l[7, 8] is a set of unsupervised learning algorithms to
cluster words with similar usage as measured on the contexts in which they appear. Among these
methods, the Skip-gram model [6] learns word embeddings by maximizing the log-likelihood of a
coocurrence matrix n” and a negative sampling matrix 1",

L
log p(n®|U, V) = Z (n:; log o (u; vj) + n;; log U(—u;rvj)) . (1)

i,j=1
Here, L is the vocabulary size and U = (u;)L, and V = (vj)]Lzl are collections of embedding
vectors for words ¢ and contexts j, respectively. Barkan [9] proposed a Bayesian variant of word2vec
by imposing Gaussian priors. Further using a Gaussian process prior for the time evolution of
embeddings, Bamler and Mandt [1]] developed a probabilisitc temporal variant termed Dynamic Word
Embeddings. Adding a time dimension ¢ € {1,...,T} to n™, U, and V, the joint distribution is

T T
p(n*,UV) = (p(lh)p(vl)Hp(UAUt_l)p(tht_l)) <Hp<nf|Ut,vt>>, 2

t=2 t=1
where the first brackets contain priors and p(nti |U, V4) is the likelihood for timestep ¢ (see Eq. .

The Dynamic Word Embeddings model, Eq. 2] embeds all words from all time steps in a joint
embedding space. This makes it possible to draw smooth trajectories of word embeddings over time.
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Figure 1: (left) Trajectory of the word ‘race’ from UN general debates corpus. The word’s usage
during the arms race of the cold war era differed from its contemporary focus on ethnicity. (right)
Gender bias of word samples measured by the most recent gender direction from Google books.
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Figure 2: (left) Trajectories of gender direction for our three corpora. (right) Estimated derivative
(central difference) of the trajectories. All corpora consistently yield more shifts during the Women’s
Rights Movement (red region).

For example, we can plot the temporal trajectory of the word ‘race’ by drawing the cosine distance
u) ur /(||ue]| |[ur||) between its embedding u, at different times ¢ € {1,..., 7T} and the most recent
one, uy. This leads to the smooth trajectory in Figure[T] (left). The figure also shows the 10 nearest
neighboring words at 10-year intervals, which show that the dominant meaning shifts over time. In
general, a change of the trajectory correspond to a change in word meaning.

To infer such posteriors, we use black-box variational inference [10, [11], an efficient approximate
Bayesian inference method. In this work, we use the Skip-gram smoothing algorithm with augmented
symmetry breaking optimization [12]]. For further details we refer readers to [1].

Datasets. In the experiments, we explore three temporal corpora available online: Google
books [[13]], Congressional records [[14], and United Nations General Debates [15]. Google books is
the largest corpus, with about 100M tokens per year from 1800 to 2008; Congressional records is
smaller, with 13M to 52M tokens per two-year period from 1875 to 2011; the UN General Debates
corpus has about 250k to 450k tokens per year from 1970 to 2018.

Gender bias. We follow the definition of a gender direction in [2] using the collection of gender
pairs from [3]]. For each gender pair (such as ‘woman : man’ or ‘she : he’), we take the difference
vector between the word embedding (posterior mode) for the male and the female word. The gender
direction is the first principal component of a PCA over all these difference vectors. This definition
results in a gender direction for each time step, allowing us to study both the evolution of gender bias
of specific words over time as well as the evolution of the notion of gender itself.

Figure [I] (right) shows an example of our results. We systematically selected six words for demon-
stration from auto-generated lists of ‘most biased words of all time’ and ‘most bias-shifted words
from 1820 to 2008’. The figure shows that most words undergo a shift during the Women’s Rights
Movement (1963-1980). We further analyze the evolution of the gender concept itself by plotting
the trajectory (Figure |Z| (left)) in the similar fashion with Figure |I| (left). We found that all three
corpora have a pronounced shift during Women’s Rights Movement. The first order derivative of
those trajectories (Figure |Z| (right)) further confirms this observation.
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