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Abstract

We consider the problem of online learning in the presence of distribution shifts
that occur at an unknown rate and of unknown intensity. We derive a new Bayesian
online inference approach to simultaneously infer these distribution shifts and
adapt the model to the detected changes by integrating ideas from change point
detection, switching dynamical systems, and Bayesian online learning. Using a
binary ‘change variable,’ we construct an informative prior such that–if a change
is detected–the model partially erases the information of past model updates by
tempering to facilitate adaptation to the new data distribution. Furthermore, the
approach uses beam search to track multiple change-point hypotheses and selects
the most probable one in hindsight. Our proposed method is model-agnostic,
applicable in both supervised and unsupervised learning settings, suitable for an
environment of concept drifts or covariate drifts, and yields improvements over
state-of-the-art Bayesian online learning approaches.

1 Introduction

Deployed machine learning systems are often faced with the problem of distribution shift, where the
new data that the model processes is systematically different from the data the system was trained
on [Zech et al., 2018, Ovadia et al., 2019]. Furthermore, a shift can happen anytime after deployment,
unbeknownst to the users, with dramatic consequences for systems such as self-driving cars, robots,
and financial trading algorithms, among many other examples.

Updating a deployed model on new, representative data can help mitigate these issues and improve
general performance in most cases. This task is commonly referred to as online or incremental
learning. Such online learning algorithms face a tradeoff between remembering and adapting. If they
adapt too fast, their performance will suffer since adaptation usually implies that the model loses
memory of previously encountered training data (which may still be relevant to future predictions).
On the other hand, if a model remembers too much, it typically has problems adapting to new data
distributions due to its finite capacity.

The tradeoff between adapting and remembering can be elegantly formalized in a Bayesian online
learning framework, where a prior distribution is used to keep track of previously learned parameter
estimates and their confidences. For instance, variational continual learning (VCL) [Nguyen et al.,
2018] is a popular framework that uses a model’s previous posterior distribution as the prior for new
data. However, the assumption of such continual learning setups is usually that the data distribution
is stationary and not subject to change, in which case adaptation is not an issue.

This paper proposes a new Bayesian online learning framework suitable for non-stationary data
distributions. It is based on two assumptions: (i) distribution shifts occur irregularly and must be
inferred from the data, and (ii) the model requires not only a good mechanism to aggregate data but
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also the ability to partially forget information that has become obsolete. To solve both problems,
we still use a Bayesian framework for online learning (i.e., letting a previous posterior distribution
inform the next prior); however, before combining the previously learned posterior with new data
evidence, we introduce an intermediate step. This step allows the model to either broaden the
previous posterior’s variance to reduce the model’s confidence, thus providing more “room” for new
information, or remain in the same state (i.e., retain the unchanged, last posterior as the new prior).

We propose a mechanism for enabling this decision by introducing a discrete “change variable”
that indicates the model’s best estimate of whether the data in the new batch is compatible with the
previous data distribution or not; the outcome then informs the Bayesian prior at the next time step.
We further augment the scheme by performing beam search on the change variable. This way, we are
integrating change detection and Bayesian online learning into a common framework.

We test our framework on a variety of real-world datasets that show concept drift, including basketball
player trajectories, malware characteristics, sensor data, and electricity prices. We also study
sequential versions of SVHN and CIFAR-10 with covariate drift, where we simulate the shifts
in terms of image rotations. Finally, we study word embedding dynamics in an unsupervised
learning approach. Our approach leads to a more compact and interpretable latent structure and
significantly improved performance in the supervised experiments. Furthermore, it is highly scalable;
we demonstrate it on models with hundreds of thousands of parameters and tens of thousands of
feature dimensions.

Our paper is structured as follows: we review related work in Section 2, introduce our methods in
Section 3, report our experiments in Section 4, and draw conclusions in Section 6.

2 Related Work

Our paper connects to Bayesian online learning, change detection, and switching dynamical systems.

Bayesian Online and Continual Learning There is a rich existing literature on Bayesian and
continual learning. The main challenge in streaming setups is to reduce the impact of old data on
the model which can be done by exponentially decaying old samples [Honkela and Valpola, 2003,
Sato, 2001, Graepel et al., 2010] or re-weighting them [McInerney et al., 2015, Theis and Hoffman,
2015]. An alternative approach is to adapt the model posterior between time steps, such as tempering
it at a constant rate to accommodate new information [Kulhavỳ and Zarrop, 1993, Kurle et al., 2020].
In contrast, continual learning typically assumes a stationary data distribution and simply uses the
old posterior as the new prior. A scalable such scheme based on variational inference was proposed
by [Nguyen et al., 2018] which was extended by several authors [Farquhar and Gal, 2018, Schwarz
et al., 2018]. A related concept is elastic weight consolidation [Kirkpatrick et al., 2017], where new
model parameters are regularized towards old parameter values.

All of these approaches need to make assumptions on the expected frequency and strengh of change
which are hard-coded in the model parameters (e.g., exponential decay rates, re-weighting terms,
prior strengths, or temperature choices). Our approach, in contrast, detects change based on a discrete
variable and makes no assumption about its frequency. Other approaches assume situations where
data arrive in irregular time intervals, but are still concerned with static data distributions [Titsias
et al., 2019, Lee et al., 2020, Rao et al., 2019].

Change Point Models There is also a rich history of models for change detection. A popular class
of change point models includes “product partition models” [Barry and Hartigan, 1992] which assume
independence of the data distribution across segments. In this regime, Fearnhead [2005] proposed
change detection in the context of regression and generalized it to online inference [Fearnhead and
Liu, 2007]; Adams and MacKay [2007] described a Bayesian online change point detection scheme
(BOCD) based on conditional conjugacy assumptions for one-dimensional sequences. Other work
generalized change detection algorithms to multivariate time series [Xuan and Murphy, 2007, Xie
et al., 2012] and non-conjugate Bayesian inference [Saatçi et al., 2010, Knoblauch and Damoulas,
2018, Turner et al., 2013, Knoblauch et al., 2018].

Our approach relies on jointly inferring changes in the data distribution while carrying out Bayesian
parameter updates for adaptation. To this end, we detect change in the high-dimensional space of
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model (e.g., neural network) parameters, as opposed to directly in the data space. Furthermore, a
detected change only partially resets the model parameters, as opposed to triggering a complete reset.

Titsias et al. [2020] proposed change detection to detect distribution shifts in sequences based on
low-dimensional summary statistics such as a loss function; however, the proposed framework does
not use an informative prior but requires complete retraining.

Switching Linear Dynamical Systems Since our approach integrates a discrete change variable,
it is also loosely connected to the topic of switching linear dynamical systems. Linderman et al.
[2017] considered recurrent switching linear dynamical systems, relying on Bayesian conjugacy and
closed-form message passing updates. Becker-Ehmck et al. [2019] proposed a variational Bayes
filtering framework for switching linear dynamical systems. Murphy [2012] and Barber [2012]
developed an inference method using a Gaussian sum filter. Instead, we focus on inferring the full
history of discrete latent variable values instead of just the most recent one.

Bracegirdle and Barber [2011] introduce a reset variable that sets the continuous latent variable to an
unconditional prior. It is similar to our work, but relies on using low-dimensional, tractable models.
Our tempering prior can be seen as a partial reset, augmented with beam search. We also extend the
scope of switching dynamical systems by integrating them into a supervised learning framework.

3 Methods

Overview Section 3.1 introduces the setup and the novel model structure under consideration.
Section 3.2 introduces an exact inference scheme based on beam search. Finally, we introduce the
variational inference extension for intractable likelihood models in Section 3.3.

3.1 Problem Assumptions and Structure

We consider a stream of data that arrives in batches xt at discrete times t.1 For supervised setups,
we consider pairs of features and targets (xt,yt), where the task is to model p(yt|xt). An example
model could be a Bayesian neural network, and the parameters zt could be the network weights. For
notational simplicity we focus on the unsupervised case, where the task is to model p(xt) using a
model p(xt|zt) with parameters zt that we would like to tune to each new batch.2 We then measure
the prediction error either on one-step-ahead samples or using a held-out test set.

Furthermore, we assume that while the xt are i.i.d. within batches, they are not necessarily i.i.d. across
batches as they come from a time-varying distribution pt(xt) (or pt(xt,yt) in the supervised cases)
which is subject to distribution shifts. We do not assume whether these distribution shifts occur
instantaneously or gradually. The challenge is to optimally adapt the parameters zt to each new batch
while borrowing statistical strength from previous batches.

As follows, we will construct a Bayesian online learning scheme that accounts for changes in the data
distribution. For every new batch of data, our scheme tests whether the new batch is compatible with
the old data distribution, or more plausible under the assumption of a change. To this end, we employ
a binary “change variable” st, with st = 0 for no detected change and st = 1 for a detected change.
Our model’s joint distribution factorizes as follows:

p(x1:T , z1:T , s1:T ) =

T∏
t=1

p(xt|zt)p(zt|st; τ t)p(st). (1)

We assumed a factorized Bernoulli prior
∏

t p(st) over the change variable: an assumption that will
simplify the inference, but which can be relaxed. As a result, our model is fully-factorized over time,
however, the model can still capture temporal dependencies through the informative prior p(zt|st; τ t).
Temporal information enters this prior through certain sufficient statistics τ t that depend on properties
of the previous time-step’s approximate posterior.

In more detail, τ t is a functional on the previous time step’s approximate posterior, τ t =
F [p(zt−1|x1:t−1, s1:t−1)].3 Throughout this paper, we will use a specific form of τ t, namely

1In an extreme case, it is possible for a batch to include only a single data point.
2In supervised setups, we consider a conditional model p(yt|zt,xt) with features xt and targets yt.
3Subscripts 1: t− 1 indicates the integers from 1 to t− 1 inclusively.
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Figure 1: a) A single inference step for the latent mean in a 1D linear Gaussian model. Starting from
the previous posterior (a1), we consider both its broadened and un-broadened version (a2). Then the
model absorbs the observation and updates the priors (a3). b) Sparse inference via greedy search (b1)
and variational beam search (b2). b) Solid lines indicate fitted mean µt over time steps t with boxes
representing ±1σ error bars. See more information about the pictured “shy” variant in Supplement C.

capturing the previous posterior’s mean and variance.4 More formally,

τ t ≡ {µt−1,Σt−1} ≡ {Mean,Var}[zt−1|x1:t−1, s1:t−1]. (2)

Based on this choice, we define the conditional prior as follows:

p(zt|st; τ t) =

{N (zt;µt−1,Σt−1) for st = 0

N (zt;µt−1, β
−1Σt−1) for st = 1

(3)

Above, 0 < β < 1 is a hyperparameter referred to as inverse temperature5. If no change is detected
(i.e., st = 0), our prior becomes a Gaussian distribution centered around the previous posterior’s
mean and variance. In particular, if the previous posterior was already Gaussian, it becomes the new
prior. In contrast, if a change was detected, the broadened posterior becomes the new prior.

For as long as no changes are detected (st = 0), the procedure results in a simple Bayesian online
learning procedure, where the posterior uncertainty shrinks with every new observation. In contrast,
if a change is detected (st = 1), an overconfident prior would be harmful for learning as the model
needs to adapt to the new data distribution. We therefore weaken the prior through tempering. Given a
temperature β, we raise the previous posterior’s Gaussian approximation to the power β, renormalize
it, and then use it as a prior for the current time step.

The process of tempering the Gaussian posterior approximation can be understood as removing equal
amounts of information in any direction in the latent space. To see this, let z be a multivariate Gaussian
with covariance Σ and u be a unit direction vector. Then tempering removes an equal amount of
information regardless of u, Hu = 1

2 log(2πeu
⊤Σu) − 1

2 log β, erasing learned information to
free-up model capacity to adjust to the new data distribution. See Supplement B for more details.

Connection to Sequence Modeling Our model assumptions have a resemblance to time series
modeling: if we replaced τ t with zt−1, we would condition on previous latent states rather than
posterior summary statistics. In contrast, our model still factorizes over time and therefore makes
weaker assumptions on temporal continuity. Rather than imposing temporal continuity on a data
instance level, we instead assume temporal continuity at a distribution level.

Connection to Changepoint Modeling. We also share similar assumptions with the changepoint
literature [Barry and Hartigan, 1992]. However, in most cases, these models don’t assume an
informative prior, effectively not taking into account any sufficient statistics τ t. This forces these
models to re-learn model parameters from scratch after a detected change, whereas our approach
allows for some transfer of information before and after the distribution shift.

3.2 Exact Inference

Before presenting a scalable variational inference scheme in our model, we describe an exact inference
scheme when everything is tractable, i.e., the special case of linear Gaussian models.

4In later sections, we will use a Gaussian approximation to the posterior, but here it is enough to assume that
these quantities are computable.

5In general it only requires β > 0 to be inverse temperature. We further assume β < 1 in this paper as this
value interval broadens and weakens the previous posterior. See the following paragraphs.
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According to our assumptions, the distribution shifts occur at discrete times and are unobserved.
Therefore, we have to infer them from the observed data and adapt the model accordingly. Recall the
distribution shift is represented by the binary latent variable st at time step t. Inferring the posterior
over st at t will thus notify us how likely the change happens under the model assumption. As follows,
we show the posterior of st is simple in a tractable model and bears similarity with a likelihood ratio
test. Suppose we moved from time step t− 1 to step t and observed new data xt. Denote the history
decisions and observations by {s1:t−1,x1:t−1}, which enters through τ t. Then by Bayes rule, the
exact posterior over st is again a Bernoulli, p(st|s1:t−1,x1:t) = Bern(st;m), with parameter

m = σ

(
log

p(xt|st=1, s1:t−1,x1:t−1)p(st=1)

p(xt|st=0, s1:t−1,x1:t−1)p(st=0)

)
= σ

(
log

p(xt|st=1, s1:t−1,x1:t−1)

p(xt|st=0, s1:t−1,x1:t−1)
+ ξ0

)
.

(4)
Above, σ is the sigmoid function, and ξ0 = log p(st = 1) − log p(st = 0) are the log-odds of the
prior p(st) and serves as a bias term. p(xt|s1:t,x1:t−1) =

∫
p(xt|zt)p(zt|st; τ t)dzt is the model

evidence. Overall, m specifies the probability of st = 1 given x1:t and s1:t−1.

Eq. 4 has a simple interpretation as a likelihood ratio test: a change is more or less likely depending
on whether or not the observations xt are better explained under the assumption of a detected change.

We have described the detection procedure thus far, now we turn to the adaptation procedure. To
adjust the model parameters zt to the new data given a change or not, we combine the likelihood
of xt with the conditional prior (Eq. 3). This corresponds to the posterior of zt, p(zt|x1:t, s1:t) =
p(xt|zt)p(zt|st;τ t)
p(xt|s1:t,x1:t−1)

, obtained by Bayes rule. The adaptation procedure is illustrated in Fig. 1 (a), where
we show how a new observation modifies the conditional prior of model parameters.

As a result of Eq. 4, we obtain the marginal distribution of zt at time t as a binary mixture with
mixture weights p(st=1|s1:t−1,x1:t) = m and p(st=0|s1:t−1,x1:t) = 1−m: p(zt|s1:t−1,x1:t) =
mp(zt|st=1, s1:t−1,x1:t) + (1−m)p(zt|st=0, s1:t−1,x1:t).

Exponential Branching We note that while we had originally started with a posterior
p(zt−1|x1:t−1, s1:t−1) at the previous time, our inference scheme resulted in p(zt|s1:t−1,x1:t) being
a mixture of two components as it branches over two possible states.6 When we iterate, we encounter
an exponential branching of possibilities, or hypotheses over possible sequences of regime shifts s1:t.
To still carry out the filtering scheme efficiently, we need a truncation scheme, e.g., approximate the
bimodal marginal distribution by a unimodal one. As follows, we will discuss two methods—greedy
search and beam search—to achieve this goal.

Greedy Search In the simplest “greedy” setup, we train the model in an online fashion by iterating
over time steps t. For each t, we update a truncated distribution via the following three steps:

1. Compute the conditional prior p(zt|st; τ t) (Eq. 3) based on p(zt−1|x1:t−1, s1:t−1) and evaluate
the likelihood p(xt|zt) upon observing data xt.

2. Infer whether a change happens or not using the posterior over st (Eq. 4) and adapt the model
parameters zt for each case.

3. Select st ∈ {0, 1} that has larger posterior probability p(st|s1:t−1,x1:t) and its corresponding
model hypothesis p(zt|s1:t,x1:t) (i.e., make a “hard” decision over st with a threshold of 1

2 ).

The above filtering algorithm iteratively updates the posterior distribution over zt each time it observes
new data xt. In the version of greedy search discussed above, the approach decides immediately,
i.e., before observing subsequent data points, whether a change in zt has occurred or not in step 3.
(Please note the decision is irrelevant to history, as opposed to the beam search described below.) We
illustrate greedy search is illustrated in Fig. 1 (b1) where VGS is the variational inference counterpart.

Beam Search A greedy search is prone to missing change points in data sets with a low signal/noise
ratio per time step because it cannot accumulate evidence for a change point over a series of time
steps. The most obvious improvement over greedy search that has the ability to accumulate evidence
for a change point is beam search. Rather than deciding greedily whether a change occurred or not
at each time step, beam search considers both cases in parallel as it delays the decision of which

6See also Fig. 4 in Supplement C.
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one is more likely (see Fig. 1 (b2) and Fig. 2 (left) for illustration). The algorithm keeps track of
a fixed number K > 1 of possible hypotheses of change points. For each hypothesis, it iteratively
updates the posterior distribution as a greedy search. At time step t, every potential continuation of
the K sequences is considered with st ∈ {0, 1}, thus doubling the number of histories of which the
algorithm has to track. To keep the computational requirements bounded, beam search thus discards
half of the sequences based on an exploration-exploitation trade-off.

Beam search simultaneously tracks multiple hypotheses necessitating the differentiation between
them. In greedy search, we can distinguish hypotheses based on the most recent st’s value since only
two hypotheses are considered at each step. However, beam search considers at most 2K hypotheses
each step, which exceeds the capacity of a single st. We thus resort to the decision history s1:t−1 to
further tell hypotheses apart. The weight p(s1:t|x1:t) of each hypothesis can be computed recursively:

p(s1:t|x1:t) ∝ p(st,xt|s1:t−1,x1:t−1)p(s1:t−1|x1:t−1)

∝ p(st|s1:t−1,x1:t)p(s1:t−1|x1:t−1) (5)

where the added information p(st|s1:t−1,x1:t) at step t is the posterior of st (Eq. 4). This suggests
the “correction in hindsight” nature of beam search: re-ranking the sequence s1:t as a whole at time t
indicates the ability to correct decisions before time t.

Another ingredient is a set Bt, which contains the K most probable “histories” s1:t at time t. From
time t− 1 to t, we evaluate the continuation of each hypothesis s1:t−1 ∈ Bt−1 as the first two steps
of greedy search, leading to 2K hypotheses. We then compute the weight of each hypothesis using
Eq. 5. Finally, select top K hypotheses into Bt and re-normalize the weights of hypotheses in Bt.

This concludes the recursion from time t − 1 to t. With p(zt|s1:t,x1:t) and p(s1:t|x1:t), we can
achieve any marginal distribution of zt, such as p(zt|x1:t) =

∑
s1:t

p(zt|s1:t,x1:t)p(s1:t|x1:t).

Beam Search Diversification Empirically, we find that the naive beam search procedure does not
realize its full potential. As commonly encountered in beam search, histories over change points are
largely shared among all members of the beam. To encourage diverse beams, we constructed the
following simple scheme. While transitioning from time t−1 to t, every hypothesis splits into two
scenarios, one with st=0 and one with st=1, resulting in 2K temporary hypotheses. If two resulting
hypotheses only differ in their most recent st-value, we say that they come from the same “family.”
Each member among the 2K hypotheses is ranked according to its posterior probability p(s1:t|x1:t)
in Eq. 5. In a first step, we discard the bottom 1/3 of the 2K hypotheses, leaving 4/3K hypotheses
(we always take integer multiples of 3 for K). To truncate the beam size from 4/3K down to K,
we rank the remaining hypotheses according to their posterior probability and pick the top K ones
while also ensuring that we pick a member from every remaining family. The diversification scheme
ensures that underperforming families can survive, leading to a more diverse set of hypotheses. We
found this beam diversification scheme to work robustly across a variety of experiments.

3.3 Variational Inference

In most practical applications, the evidence term is not available in closed-form, leaving Eq. 4
intractable to evaluate. However, we can follow a structured variational inference approach [Wain-
wright and Jordan, 2008, Hoffman and Blei, 2015, Zhang et al., 2018], defining a joint varia-
tional distribution q(zt, st|s1:t−1) = q(st|s1:t−1)q(zt|s1:t), to approximate p(zt, st|s1:t−1,x1:t) =
p(st|s1:t−1,x1:t)p(zt|s1:t,x1:t). This procedure completes the detection and adaptation altogether.

One may wonder how the exact inference schemes for st and zt are modified in the structured varia-
tional inference scenario. In Supplement A, we derive the solution for q(zt, st|s1:t−1). Surprisingly
we have the following closed-form update equation for q(st|s1:t−1) that bears strong similarities to
Eq. 4. The new scheme simply replaces the intractable evidence term with a lower bound proxy –
optimized conditional evidence lower bound L(q∗|s1:t) (CELBO, defined later), giving the update

q∗(st|s1:t−1) = Bern(st;m); m = σ
(
1
T L(q∗|st=1, s1:t−1)− 1

T L(q∗|st=0, s1:t−1) + ξ0
)
.
(6)

Above, we introduced a parameter T ≥ 1 (not to be confused with β) to optionally downweigh the
data evidence relative to the prior (see Experiments Section 4).
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Figure 2: a) Inferring the mean (black line) of a time-varying data distribution (black samples) with
VBS. The initially unlikely hypothesis begins dominating over the other at step 23. b) Basketball
player tracking: ablation study over β for VBS while fixing other parameters. We used greedy search
(K=1) and run the model under different β values. Increasing β leads to more sensitivity to changes
in data, leading to more detected changepoints. c) Document dating error as a function of model
sparsity, measured in average words update per year. As semantic changes get successively sparsified
by varying ξ0 (Eq. 6), VBS maintains a better document dating performance compared to baselines.

Now we define the CELBO. To approximate p(zt|s1:t,x1:t) by variational distribution q(zt|s1:t), we
minimize the KL divergence between q(zt|s1:t) and p(zt|s1:t,x1:t), leading to

q∗(zt|s1:t) = arg max
q(zt|s1:t)∈Q

L(q|s1:t), (7)

L(q|s1:t) := Eq[log p(xt|zt)]− KL(q(zt|s1:t)||p(zt|st; τ t)).

Q denotes the variational family (i.e., factorized normal distributions), and we term L(q|s1:t) CELBO.

The greedy search and beam search schemes also apply to variational inference. We name them
variational greedy search (VGS, VBS (K=1)) and variational beam search (VBS) (Fig. 1 (b)).

Algorithm Complexity VBS’s computational time and space complexity scale linearly with the
beam size K. As such, its computational cost is only about 2K times larger than greedy search7.
Furthermore, our algorithm’s complexity is O(1) in the sequence length t. It is not necessary to
store sequences s1:t as they are just symbols to distinguish hypotheses. The only exception to this
scaling would be an application asking for the most likely changepoint sequence in hindsight. In this
case, the changepoint sequence (but not the associated model parameters) would need to be stored,
incurring a cost of storing exactly K × T binary variables. This storage is, however, not necessary
when the focus is only on adapting to distribution shifts.

4 Experiments

Overview The objective of our experiments is to show that, compared to other methods, variational
beam search (1) better reacts to different distribution shifts, e.g., concept drifts and covariate drifts,
while (2) revealing interpretable and temporally sparse latent structure. We experiment on artificial
data to demonstrate the “correct in hindsight” nature of VBS (Section 4.1), evaluate online linear
regression on three datasets with concept shifts (Section 4.3), visualize the detected change points
on basketball player movements, demonstrate the robustness of the hyperparameter β (Section 4.3),
study Bayesian deep learning approaches on sequences of transformed images with covariate shifts
(Section 4.4), and study the dynamics of word embeddings on historical text corpora (Section 4.5).
Unstated experimental details are in Supplement G.

4.1 An Illustrative Example

We first aim to dynamically demonstrate the “correction in hindsight” nature of VBS based on a
simple setup involving artificial data. To this end, we formulated a problem of tracking the shifting
mean of data samples. This shifting mean is a piecewise-constant step function involving two steps
(seen as in black in Fig. 2 (a)), and we simulated noisy data points centered around the mean. We
then used VBS with beam size K = 2 to fit the same latent mean model that generated the data. The
color indicates the ranking among both hypotheses at each moment in time (blue as “more likely”

7This also applies to the baselines “Bayesian Forgetting” (BF) and Variational Continual Learning" (VCL)
introduced in Section 4.2.
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vs. orange as “less likely”). While hypothesis 1 assumes a single distribution shift (initially blue),
hypothesis 2 (initially orange) assumes two shifts. We see that hypothesis 1 is initially more likely,
but gets over-ruled by the better hypothesis 2 later (note the color swap at step 23).

4.2 Baselines

In our supervised experiments (Section 4.3 and Section 4.4), we compared VBS against adaptive
methods, Bayesian online learning baselines, and independent batch learning baselines.8 Among
the adaptive methods, we formulated a supervised learning version of Bayesian online change-
point detection (BOCD) [Adams and MacKay, 2007].9 We also implemented Bayesian forgetting
(BF) [Kurle et al., 2020] with convolutional neural networks for proper comparisons. Bayesian online
learning baselines include variational continual learning (VCL) [Nguyen et al., 2018] and Laplace
propagation (LP) [Smola et al., 2003, Nguyen et al., 2018]. Finally, we also adopt a trivial baseline
of learning independent regressors/classifiers on each batch in both a Bayesian and non-Bayesian
fashion. For VBS and BOCD we always report the most dominant hypothesis. In unsupervised
learning experiments, we compared against the online version of word2vec [Mikolov et al., 2013]
with a diffusion prior, dynamic word embeddings [Bamler and Mandt, 2017].

4.3 Bayesian Linear Regression Experiments

As a simple first version of VBS, we tested an online linear regression setup for which the posterior can
be computed analytically. The analytical solution removes the approximation error of the variational
inference procedure as well as optimization-related artifacts since closed-form updates are available.
Detailed derivations are in Supplement D.

Real Datasets with Concept Shifts. We investigated three real-world datasets with concept shifts:

• Malware This dataset is a collection of 100K malignous and benign computer programs, collected
over 44 months [Huynh et al., 2017]. Each program has 482 counting features and a real-valued
probability p ∈ [0, 1] of being malware. We linearly predicted the log-odds.

• SensorDrift A collection of chemical sensor readings [Vergara et al., 2012]. We predicted the
concentration level of gas acetaldehyde, whose 2,926 samples and 128 features span 36 months.

• Elec2 The dataset contains the electricity price over three years of two Australian states [Harries
and Wales, 1999]. While the original problem formulation used a majority vote to generate 0-1
binary labels on whether the price increases or not, we averaged the votes out into real-valued
probabilities and predicted the log-odds instead. We had 45,263 samples and 14 features.

At each step, only one data sample is revealed to the regressor. We evaluated all methods with
one-step-ahead absolute error10 and computed the mean cumulative absolute error (MCAE) at every
step. In Table 1, we didn’t report the variance of MCAEs since there is no stochastic optimization
noise. Table 1 shows that VBS has the best average of MCAEs among all methods. We also reported
the running performance in Supplement G.2, where other experimental details are available as well.

Basketball Player Tracking. We explored a collection of basketball player movement trajectories.11

Each trajectory has wide variations in player velocities. We treated the trajectories as time series and
used a Bayesian transition matrix to predict the next position xt+1 based on the current position xt.
This matrix is learned and adapted on the fly for each trajectory.

We first investigated the effect of the temperature parameter β in our approach. To this end, we
visualized the detected change points on an example trajectory. We used VBS (K=1, greedy search)
and compared different values of β in Fig. 2 (b). The figure shows that the larger β, the more change

8As a reminder, a “batch” at discrete time t is the dataset available for learning; on the other hand, a
“mini-batch” is a small set of data used for computing gradients for stochastic gradient-based optimization.

91) Although BOCD is mostly applied for unsupervised learning, its application in supervised learning and
its underlying model’s adaptation to change points are seldom investigated. 2) When the model is non-conjugate,
such as Bayesian neural networks, we approximate the log evidence log p(y|x) by the evidence lower bound.

10We measured the error in the probability space for classification problems (Malware and Elec2) and the
error in the data space for regression problems (SensorDrift).

11https://github.com/linouk23/NBA-Player-Movements
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Table 1: Evaluation of Different Datasets

MODELS CIFAR-10 SVHN MALWARE SENSORDRIFT ELEC2 NBAPLAYER

(ACCURACY)↑ (MCAE 10−2 )↓ (LOGLIKE 10−2 )↑

VBS (K=6)∗ 69.2±0.9 89.6±0.5 11.61 10.53 7.28 29.49±3.12
VBS (K=3)∗ 68.9±0.9 89.1±0.5 11.65 10.71 7.28 29.22±2.63
VBS (K=1)∗ 68.2±0.8 88.9±0.5 11.65 10.86 7.27 29.25±2.59

BOCD (K=6)♯ 65.6±0.8 88.2±0.5 12.93 24.34 12.49 22.96±7.42
BOCD (K=3)♯ 67.3±0.8 88.8±0.5 12.74 24.31 12.49 20.93±7.83
BF¶ 69.8±0.8 89.9±0.5 11.71 11.40 13.37 24.17±2.29
VCL† 66.7±0.8 88.7±0.5 13.27 24.90 16.59 3.48±25.53
LP‡ 62.6±1.0 82.8±0.9 13.27 24.90 16.59 3.48±25.53
IB§ 63.7±0.5 85.5±0.7 16.6 27.71 12.48 -44.87±16.88
IB§ (BAYES) 64.5±0.3 87.8±0.1 16.6 27.71 12.48 -44.87±16.88
∗ PROPOSED, ♯ [ADAMS AND MACKAY, 2007], ¶ [KURLE ET AL., 2020]
† [NGUYEN ET AL., 2018], ‡ [SMOLA ET AL., 2003], § INDEPENDENT BATCH

Figure 3: Sparse word meaning
changes in “simulation” and “atom”.

points are detected; the smaller β, the detected change points get sparser, i.e., β determines the
model’s sensitivity to changes. This observation confirms the assumption that β controls the assumed
strength of distribution shifts.

In addition, the result also implies the robustness of poorly selected βs. When facing an abrupt change
in the trajectory, the regressor has two adapt options based on different βs – make a single strong
adaptation or make a sequence of weak adaptations – in either case, the model ends up adapting itself
to the new trajectory. In other words, people can choose different β for a specific environment, with a
trade-off between adaptation speed and the erased amount of information.

Finally, regarding the quantitative results, we evaluated all methods with the time-averaged predictive
log-likelihood on a reserved test set in Table 1. Our proposed methods yield better performance than
the baselines. In Supplement F, we provide more results of change point detection.

4.4 Bayesian Deep Learning Experiments

Our larger-scale experiments involve Bayesian convolutional neural networks trained on sequential
batches for image classification using CIFAR-10 [Krizhevsky et al., 2009] and SVHN [Netzer et al.,
2011]. Every few batches, we manually introduce covariate shifts through transforming all images
globally by combining rotations, shifts, and scalings. Each transformation is generated from a fixed,
predefined distribution (see Supplement G.3). The experiment involved 100 batches in sequence,
where each batch contained a third of the transformed datasets. We set the temperature β=2/3 and
set the CELBO temperature T =20, 000 (in Eq. 6) for all supervised experiments.

Table 1 shows the performances of all considered methods and both data sets, averaged across all of
the 100 batches. Within their confidence bounds, VBS and BF have comparable performances and
outperform the other baselines. We conjecture that the strong performance of BF can be attributed to
the fact that our imposed changes are still relatively evenly spaced and regular. The benefit of beam
search in VBS is evident, with larger beam sizes consistently performing better.

4.5 Unsupervised Experiments

Our final experiment focused on unsupervised learning. We intended to demonstrate that VBS helps
uncover interpretable latent structure in high-dimensional time series by detecting change points. We
also showed that the detected change points help reduce the storage size and maintain salient features.

Towards this end, we analyzed the semantic changes of individual words over time in an unsupervised
setup. We used Dynamic Word Embeddings (DWE) [Bamler and Mandt, 2017] as our base model.
The model is an online version of Word2Vec [Mikolov et al., 2013]. Word2Vec projects a vocabulary
into an embedding space and measures word similarities by cosine distance in that space. DWE
further imposes a time-series prior on the embeddings and tracks them over time. For our proposed
approach, we augmented DWE with VBS, allowing us to detect the changes of words meaning.

We analyzed three large time-stamped text corpora, all of which are available online. Our first dataset
is the Google Books corpus [Michel et al., 2011] in n-grams form. We focused on 1900 to 2000
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with sub-sampled 250M to 300M tokens per year. Second, we used the Congressional Records
dataset [Gentzkow et al., 2018], which has 13M to 52M tokens per two-year period from 1875 to
2011. Third, we used the UN General Debates corpus [Jankin Mikhaylov et al., 2017], which has
about 250k to 450k tokens per year from 1970 to 2018.

Our first experiments demonstrate VBS provides more interpretable step-wise word meaning shifts
than the continuous shifts (DWE). Due to page limits, in Fig. 3 we selected two example words
and their three nearest neighbors in the embedding space at different years. The evolving nearest
neighbors reflect a semantic change of the words. We plotted the most likely hypothesis of VBS
in blue and the continuous-path baseline (DWE) in grey. While people can roughly tell the change
points from the continuous path, the changes are surrounded by noisy perturbations and sometimes
submerged within the noise. VBS, on the other hand, makes clear decisions and outputs explicit
change points. As a result, VBS discovers that the word “atom” changes its meaning from “element”
to “nuclear” in 1945–the year when two nuclear bombs were detonated; word “simulation” changes
its dominant context from “deception” to “programming” with the advent of computers in the 1950s.
Besides interpretable changes points, VBS provides multiple plausible hypotheses (Supplement G.4).

Our second experiments exemplify the usefulness of the detected sparse change points, which lead to
sparse segments of embeddings. The usefulness comes in two folds: 1) while alleviating the burden
of the disk storage by storing one value for each segment, 2) the sparsity preserves the salient features
of the original model. To illustrate these two aspects, we design a document dating task that exploits
the probabilistic interpretation of word embeddings. The idea is to assign a test document to the year
whose embeddings provide the highest likelihood. In Figure 2 (c), we measure the model sparsity
on the x-axis with the average updated embeddings per step (The maximum is 10000, which is the
vocabulary size). The feature preservation ability is measured by document dating accuracy on the
y-axis. We adjust the prior log-odds ξ0 (Eq. 6) to have successive models with different change point
sparsity and then measure the dating accuracy. We also designed an oracle baseline named “binning”
(grey, Supplement G.4). For VBS, we show the dominant hypothesis (blue) as well as the subleading
hypotheses (orange). The most likely hypothesis of VBS outperforms the baseline, leading to higher
document dating precision at much smaller disk storage.

5 Discussion

Beyond Gaussian Posterior Approximations. While the Gaussian approximation is simple and is
widely used (and broadly effective) in practice in Bayesian inference [e.g., Murphy [2012], pp.649-
662], our formulation does not rule out the extensions to exponential families. τ t in Eq. 2 could be
generalized by reading off sufficient statistics of the previous approximate posterior. To this end, we
need a sufficient statistic that is associated with some measure of entropy or variance that we broaden
after each detected change. For example, the Gamma distribution can broaden its scale, and for the
categorical distribution, we can increase its entropy/temperature. More intricate (e.g. multimodal)
possible alternatives for posterior approximation are also possible, for example, Gaussian mixtures.

6 Conclusions

We introduced variational beam search: an approximate inference algorithm for Bayesian online
learning on non-stationary data with irregular changes. Our approach mediates the tradeoff between
a model’s ability to memorize past data while still being able to adapt to change. It is based on a
Bayesian treatment of a given model’s parameters and aimed at tuning them towards the most recent
data batch while exploiting prior knowledge from previous batches. To this end, we introduced a
sequence of a discrete change variables whose value controlled the way we regularized the model.
For no detected change, we regularized the new learning task towards the previously learned solution;
for a detected change, we broadened the prior to give room for new data evidence. This procedure is
combined with beam search over the discrete change variables. In different experiments, we showed
that our proposed model (1) achieved lower error in supervised setups, and (2) revealed a more
interpretable and compressible latent structure in unsupervised experiments.

Broader Impacts. As with many machine learning algorithms, there is a danger that more automa-
tion could potentially result in unemployment. Yet, more autonomous adaptation to changes will
enhance the safety and robustness of deployed machine learning systems, such as self-driving cars.
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A Structured Variational Inference

According to the main paper, we consider the generative model p(xt, zt, st|x1:t−1, s1:t−1) =
p(st)p(zt|st; τ t)p(xt|zt) at time step t, where the dependence on x1:t−1, s1:t−1 is contained in
τ t. Upon observing the data xt, both zt and st are inferred. However, exact inference is not available
due to the intractability of the marginal likelihood p(xt|s1:t,x1:t−1). To tackle this, we utilize
structured variational inference for both the latent variables zt and the Bernoulli change variable
st. To this end, we define the joint variational distribution q(zt, st) = q(st|s1:t−1)q(zt|s1:t) as in
the main paper. For notational simplicity, we omit the dependence on s1:t−1. Then the updating
procedure for q(st) and q(zt|st) is obtained by maximizing the ELBO L(q):

q∗(zt, st) = arg max
q(zt,st)∈Q

L(q),

L(q) := Eq[log p(xt, zt, st; τ t)− log q(zt, st)].

Given the generative models, we can further expand L(q) to simplify the optimization:

L(q) = Eq(st)q(zt|st)[log p(st) + log p(zt|st; τ t) + log p(xt|zt)− log q(st)− log q(zt|st)]
= Eq(st)[log p(st)− log q(st) + Eq(zt|st)[log p(zt|st; τ t) + log p(xt|zt)− log q(zt|st)]]
= Eq(st)[log p(st)− log q(st) + Eq(zt|st)[log p(xt|zt)]− KL(q(zt|st)||p(zt|st; τ t))]

= Eq(st)[log p(st)− log q(st) + L(q|st)] (8)

where the second step pushes inside the expectation with respect to q(zt|st), the third step re-orders
the terms, and the final step utilizes the definition of CELBO (Eq. 7 in the main paper).

Maximizing Eq. 8 therefore implies a two-step optimization: first maximize the CELBO L(q|st) to
find the optimal q∗(zt|st = 1) and q∗(zt|st = 0), then compute the Bernoulli distribution q∗(st) by
maximizing L(q) while the CELBOs L(q∗|st) are fixed.

While q∗(zt|st) typically needs to be inferred by black box variational inference [Ranganath et al.,
2014, Kingma and Welling, 2014, Zhang et al., 2018], the optimal q∗(st) has a closed-form solution
and bears resemblance to the exact inference counterpart (Eq. 4 in the main paper). To see this, we
assume L(q∗|st) are given and q(st) is parameterized by m ∈ R (for the Bernoulli distribution).
Rewriting Eq. 8 gives

L(q) =m(log p(st = 1)− logm+ L(q∗|st = 1))

+ (1−m)(log p(st = 0)− log(1−m) + L(q∗|st = 0))

which is concave since the second derivative is negative. Thus taking the derivative and setting it to
zero leads to the optimal solution of

log
m

1−m
= log p(st = 1)− log p(st = 0) + L(q∗|st = 1))− L(q∗|st = 0)),

m = σ(L(q∗|st = 1))− L(q∗|st = 0)) + ξ0),

which attains the closed-form solution as stated in Eq. 6 in the main paper without temperature T .

B Additive vs. Multiplicative Broadening

There are several possible choices for defining an informative prior corresponding to st = 1. In
latent time series models, such as Kalman filters [Kalman, 1960, Bamler and Mandt, 2017], it is
common to define a linear transition model zt = Azt−1 + ϵt where zt−1 ∼ N (zt−1;µt−1,Σt−1)
and ϵt ∼ N (ϵ;0,Σn). Propagating the posterior at time t − 1 to the prior at time t results in
zt ∼ N (zt;Aµt−1, AΣt−1A

⊤ + Σn). To simplify the discussion, we set A = I and Σn = σ2
nI;

the same argument also applies for the more general case. Adding a constant noise ϵt results in
adding the variance of all variables with a constant σ2

n. We thus call this convolution scheme additive
broadening. The problem with such a choice, however, is that the associated information loss is not
homogeneously distributed: σ2

n ignores the uncertainty in zt, and dimensions of zt with low posterior
uncertainty lose more information relative to dimensions of zt that are already uncertain. We found
that this scheme deteriorates the learning signal.
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Figure 4: Conditional probability table of variational beam search

Algorithm 1 Variational Beam Search
Input: task set {xt}T1 ; beam size K; prior log-odds ξ0; conditional ELBO temperature T
Output: approximate posterior distributions {q∗(s1:t), q∗(zt|s1:t)}T1

1: q∗(z1) = arg maxEq[log p(x1|z1)]− KL(q(z1)||p(z1));
2: q∗(s1 = 0) := 1; q∗(z1|s1) := q∗(z1); B = {s1 = 0};
3: for t = 1, · · · , T do
4: B′ = {}
5: for each hypothesis s<t ∈ B do
6: p(st = 1) := σ(ξ0) for random variable st ∈ {0, 1}
7: B′ := B′ ∪ {(s<t, st = 0), (s<t, st = 1)};
8: compute the task t’s prior p(zt|st, τ t) (Eq. 3);
9: perform structured variational inference (Eq. 7 and Eq. 6) given observation xt, resulting in

q∗(st, zt|s<t) = q∗(st|s<t)q
∗(zt|s<t+1) where q∗(zt|s<t+1 is stored as output q∗(zt|s1:t);

10: approximate new hypotheses’ posterior probability p(s1:t|x1:t) ≈ q∗(s<t, st) =
q∗(s<t)q

∗(st|s<t);
11: end for
12: B := diverse_truncation(B′, q∗(s<t, st));
13: normalize q∗(s<t, st) where (s<t, st) ∈ B;
14: end for

We therefore consider multiplicative broadening (or relative broadening since the associated infor-
mation loss depends on the original variance) as tempering described in the main paper, resulting in
p(zt|st, τ t) ∝ p(zt−1|x1:t−1, s1:t−1)

β for β > 0. For a Gaussian distribution, the resulting variance
scales the original variance with 1

β . In practice, we found relative or multiplicative broadening to
perform much better and robustly than additive posterior broadening. Since tempering broadens the
posterior non-locally, this scheme does not possess a continuous latent time series interpretation 12.

C Details on “Shy” Variational Greedy Search and Variational Beam Search

“Shy” Variational Greedy Search. As illustrated in Fig. 1 in the main text, one obtains better
interpretation if one outputs the variational parameters µt and σt at the end of a segment of constant
zt. More precisely, when the algorithm detects a change point st = 1, it outputs the variational
parameters µt−1 and σt−1 from just before the detected change point t. These parameters define a
variational distribution that has been fitted, in an iterative way, to all data points since the preceding
detected change point. We call this the “shy” variant of the variational greedy search algorithm,
because this variant quietly iterates over the data and only outputs a new fit when it is as certain about
it as it will ever be. The red lines and regions in Fig. 1 (a) in the main paper illustrate means and
standard deviations outputted by the “shy” variant of variational greedy search.

We applied this “Shy” variant to our illustrative example (Section 4.1) and unsupervised learning
experiments (Section 4.5).

12This means that it is impossible to specify a conditional distribution p(zt|zt−1) that corresponds to relative
broadening.
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Variational Beam Search. As follows, we present a more detailed explanation of the variational
beam search procedure mentioned in Section 3.3 of the main paper. Our beam search procedure
defines an effective way to search for potential hypotheses with regards to sequences of inferred
change points. The procedure is completely defined by detailing three sequential steps, that when
executed, take a set of hypotheses found at time step t− 1 and transform them into the resulting set
of likely hypotheses for time step t that have appropriately accounted for the new data seen at t. The
red arrows in Figure 4 illustrate these three steps for beam search with a beam size of K = 4.

In Figure 4, each of the three steps maps a table of considered histories to a new table. Each
table defines a mixture of Gaussian distributions where each mixture component corresponds to
a different history and is represented by a different row in the table. We start on the left with the
(truncated) variational distribution q∗(zt−1) from the previous time step, which is a mixture over
K = 4 Gaussian distributions. Each mixture component (row in the table) is labeled by a 0-1
vector s<t ≡ (s1, · · · , st−1) of the change variable values according to that history. Each mixture
component s<t further has a mixture weight q∗(s<t) ∈ [0, 1], a mean, and a standard deviation.

We then obtain a prior for time step t by transporting each mixture component of q∗(zt−1) forward
in time via the broadening functional (“Step 1” in the above figure). The prior p(zt) (second table in
the figure) is a mixture of 2K Gaussian distributions because each previous history splits into two
new ones for the two potential cases st ∈ {0, 1}. The label for each mixture component (table row)
is a new vector (s<t, st) or s<t+1, appending st to the tail of s<t.

“Step 2” in the above figure takes the data xt and fits a variational distribution q∗(zt) that is also a
mixture of 2K Gaussian distributions. To learn the variational distribution, we (i) numerically fit each
mixture component q(zt|s<t, st) individually, using the corresponding mixture component of p(zt)
as the prior; (ii) evaluate (or estimate) the CELBO of each fitted mixture component, conditioned on
(s<t, st); (iii) compute the approximate posterior probability q∗(st|s<t) of each mixture component,
in the presence of the CELBOs; and (iv) obtain the mixture weight equal to the posterior probability
over (s<t, st), i.e., p(s1:t|x1:t), best approximated by q∗(s<t)q

∗(st|s<t).

“Step 3” in the above figure truncates the variational distribution by discarding K of the 2K mixture
components. The truncation scheme can be either the “vanilla” beam search or diversified beam
search outlined in the main paper. The truncated variational distribution qt(zt) is again a mixture of
only K Gaussian distributions, and it can thus be used for subsequent update steps, i.e., from t to
t+ 1.

The pseudocode is listed in Algo 1.

D Online Bayesian Linear Regression with Variational Beam Search

This section will derive the analytical solution of online updates for both Bayesian linear regression
and the probability of change points. We consider Gaussian prior distributions for weights. The online
update of the posterior distribution is straightforward in the natural parameter space, where the update
is analytic given the sufficient statistics of the observations. If we further allow to temper the weights’
distributions with a fixed temperature β, then this corresponds to multiplying each element in the
precision matrix by β. We applied this algorithm to the linear regression experiments in Section 4.3.
For unified names, we still use the word “variational” even though the solutions are analytical.

D.1 Variational Continual Learning for Online Linear Regression

Let’s start with assuming a generative model at time t:

θ ∼ N (µ,Σ),

yt = θ⊤xt + ϵ, ϵ ∼ N (0, σ2
n), (9)

and the noise ϵ is constant over time.

The posterior distribution of θ is of interest, which is Gaussian distributed since both the likelihood
and prior are Gaussian. To get an online recursion for θ’s posterior distribution over time, we consider
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the natural parameterization. The prior distribution under this parameterization is

p(θ) =
1

Z
exp

(
− (θ − µ)⊤Σ−1(θ − µ)

2

)
=

1

Z
exp

(
−1

2
θ⊤Σ−1θ + θ⊤Σ−1µ

)
=

1

Z
exp

(
−1

2
θ⊤Λθ + θ⊤η

)
where Λ = Σ−1,η = Σ−1µ are the natural parameters and the terms unrelated to θ are absorbed
into the normalizer Z.

Following the same parameterization, the posterior distribution can be written

p(θ|xt, yt) ∝ p(θ)p(yt|xt,θ)

=
1

Z
exp

(
−1

2
θ⊤Λθ + θ⊤η − 1

2
σ−2
n θ⊤(xtx

⊤
t )θ + σ−2

n ytθ
⊤xt

)
=

1

Z
exp

(
−1

2
θ⊤(Λ + σ−2

n xtx
⊤
t )θ + θ⊤(η + σ−2

n ytxt)

)
.

Thus we get the recursion over the natural parameters

Λ′ = Λ+ σ−2
n xtx

⊤
t ,

η′ = η + σ−2
n ytxt,

from which the posterior mean and covariance can be solved.

D.2 Prediction and Marginal Likelihood

We can get the posterior predictive distribution for a new input x∗ through inspecting Eq. 9 and
utilizing the linear properties of Gaussian. Assuming the generative model as specified above,
we replace xt with x∗ in Eq. 9. Since θ is Gaussian distributed, by its linear property, x⊤

∗ θ
conforms to N (x⊤

∗ θ;x
⊤
∗ µ,x

⊤
∗ Σx∗). Then the addition of two independent Gaussian results in

y∗ ∼ N (y∗;x
⊤
∗ µ, σ

2
n + x⊤

∗ Σx∗).

The marginal likelihood shares this same form with the posterior predictive distribution, with a
potentially different pair of sample (x, y). To see this, given a prior distribution θ ∼ N (θ;µ,Σ),
then the marginal likelihood of y|x is

p(y|x;µ,Σ, σn) =

∫
p(y|x,θ)p(θ;µ,Σ)dθ

= N (y;x⊤µ, σ2
n + x⊤Σx) (10)

with σ2
n being the noise variance. Note that in variational inference with an intractable marginal

likelihood (not like the linear regression here), this is the approximated objective (Evidence Lower
Bound (ELBO), indeed) we aim to maximize.

Computation of the Covariance Matrix Since we parameterize the precision matrix instead
of the covariance matrix, the variance of the new test sample requires to take the inverse of the
precision matrix. In order to do this, we employ the eigendecomposition of the precision matrix and
re-assemble to the covariance matrix through inverting the eigenvalues. A better approach is to apply
the Sherman-Morrison formula for the rank one update13, which can reduce the computation from
O(n3) to O(n2).

Logistic Normal Model If we are modeling the log-odds by a Bayesian linear regression, then we
need to map the log-odds to the interval [0, 1] by the sigmoid function, to make it a valid probability.
Specifically, suppose a = N (a;µa, σ

2
a) and y = σ(a) (note we abuse σ by variances and functions,

13https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula
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but it is clear from the context and the subscripts) where σ(·) is a logistic sigmoid function. Then y
has a logistic normal distribution. Given p(y), we can make decisions for the value of y. There are
three details that worth noting. First is from the non-linear mapping of σ(·). One special property
of p(y) is that p(y) can be bimodal if the base variance or σa is large. A consequence is that the
mode of p(a) does not necessarily correspond to p(y)’s mode and E[y] ̸= σ(E[a]). Second is for the
binary classification: the decision boundary of y, i.e., 0.5, is consistent with the one of x, i.e., 0, for
decisions either by E[y] or by E[a]. See Rusmassen and Williams [2005] (Section 3.4) and Bishop
et al. [1995] (Section 10.3). Third, if our loss function for decision making is the absolute error, then
the best prediction is the median of y = σ(â) [Friedman et al., 2001] where â is the median of a.
This follows from the monotonicity of σ(·) that does not change the order statistics.

D.3 Inference over the Change Variable

To infer the posterior distribution of st given observations (x1:t, y1:t), we apply Bayes’ theorem to
infer the posterior log-odds as in the main paper

log

(
p(st = 1|x1:t, y1:t, s1:t−1)

p(st = 0|x1:t, y1:t, s1:t−1)

)
=

log(p(xt|x1:t−1, y1:t, st = 1, s1:t−1))

log(p(xt|x1:t−1, y1:t, st = 0), s1:t−1)
+ ξ0

where p(xt|x1:t−1, y1:t, st) is exactly Eq. 10 but has different parameter values dictated by st and β.

In the next part, we show the resulting distribution of the broadening operation.

D.3.1 Tempering a Multivariate Gaussian

We will show the tempering operation of a multivariate Gaussian corresponds to multiplying each
element in the precision matrix by the fixed temperature, a simple form in the natural space.

Suppose we allow to temper / broaden the θ’s multivariate Gaussian distribution before the next time
step, accommodating more evidence. Let the broadening constant or temperature be β ∈ (0, 1]. We
derive how β affects the multivariate Gaussian precision.

Write the tempering explicitly,

p(θ)β =
1

Z
exp

(
−1

2
β(θ − µ)⊤Λ(θ − µ)

)
=

1

Z
exp

(
−1

2
(θ − µ)⊤Λβ(θ − µ)

)
among which we are interested in the relationship between Λβ and Λ and β. To this end, re-write the
quadratic form in the summation

β(θ − µ)⊤Λ(θ − µ)

=
∑
i,j

βΛij(θi − µi)(θj − µj)

=
∑
i,j

Λβ,ij(θi − µi)(θj − µj)

where we can identify an element-wise relation: for all possible i, j

Λβ,ij = βΛij .

D.3.2 Prediction

As above, we are interested in the posterior predictive distribution for a new test sample (x∗, y∗)
after absorbing evidence. Let’s denote the parameters of θ’s posterior distributions by µs1:t and
Σs1:t , where the dependence over s1:t is made explicit. We then make posterior predictions with each
component

p(y∗|x∗,x, y, s1:t) = N (y∗;x
⊤
∗ µs1:t , σ

2
n + x⊤

∗ Σs1:tx∗).
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Figure 5: 1D online Bayesian linear regression with distribution shift. More recent samples are
colored darker. Due to the catastrophic remembering, VCL fails to adapt to new observations.

E Visualization of Catastrophic Remembering Effects

In order to demonstrate the effect of catastrophic remembering, we consider a simple linear regression
model. We will see that, when the data distribution changes, a Bayesian online learning framework
becomes quickly overconfident and unable to adjust to the changing data distribution. On the other
hand, with tempering, variational greedy search (VGS) can partially forget the previous knowledge
and then adapt to the shifted distribution.

Data Generating Process We generated the samples by the following generative model:

x ∼ Unif(−1, 1),

y ∼ N (f(x), 0.12)

where f(x) equals f1(x) = 0.7x− 0.5 or f2(x) = −0.7x+ 0.5. In this experiments, we sampled
the first 20 points from f1 and the remaining 20 points from f2.

Model Parameters We applied the Bayes updates mentioned in Section D to do inference over
the slope and intercept. We set the initial priors of the weights to be standard Gaussian and the
observation noise σ2

n to be the true scale, 0.1. This setting is enough for VCL.

For VGS, we set the same noise variance σ2
n = 0.1. For the method-specific parameters, we set

ξ0 = log(0.35/(1− 0.35)) and β = 1/3.5.

We plotted the noise-free posterior predictive distribution for both VCL and VGS. That is, let f∗(x)
be the fitted function, we plotted p(f∗(xt)|xt,D1:t−1) =

∫
p(f∗(xt)|xt,w,D1:t−1)p(w|D1:t−1)dw

where D1:t−1 is the observed samples so far.

Results We first visualized the catastrophic remembering effect through a 1D online Bayesian
linear regression task where a distribution shift occurred unknown to the regressor (Fig. 5). In
this setup, noisy data were sampled from two ground truth functions f1(x) = 0.7x − 0.5 and
f2(x) = −0.7x+0.5, where, with constant additive noise, the first 20 samples came from f1 and the
remaining 20 samples were from f2. The observed sample is presented one by one to the regressor.
Before the regression starts, the weights (slope and intercept) were initialized to be standard Gaussian
distributions. We experimented two different online regression methods, original online Bayesian
linear regression (VCL [Nguyen et al., 2018]) and the proposed variational greedy search (VGS).
In Fig. 5, to show a practical surrogate for the ground truth, we plotted the maximum likelihood
estimation (MLE) for each function given the observations. The blue line and the shaded area
correspond to the mean and standard deviation of the posterior predictive distribution after observing
N samples. As shown in Fig. 5, both VCL (top) and VGS (bottom) faithfully fit to f1 after observing
the first 20 samples. However, when another 20 new observations are sampled from f2, VCL shows
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Figure 6: Changepoints in Basketball player movement tracking. (Left plot) Comparisons between
VBS and BOCD [Adams and MacKay, 2007]. While BOCD detect change points at sparse, abrupt
changes, VBS detects the changes at smooth, gradual changes. (Right plot) Ablation study over
beam size K for VBS while fixing other parameters. As we increase the beam size, qualitatively
different change points are detected and the predictive likelihood improves.

catastrophic remembering of f1 and cannot adapt to f2. VGS, on the other hand, tempers the prior
distribution automatically and succeeds in adaptation.

F NBAPlayer: Change Point Detection Comparisons

VBS vs. BOCD We investigated the changepoint detection characteristics of our proposed methods
and compared against the BOCD baseline in Fig. 6 (left). On the shown example trajectory, BOCD
detects abrupt change points, corresponding to different plays, a similar phenomenon observed by
[Harrison et al., 2020]. However, we argue that it is insufficient and late to identify a player’s strategy
purpose – it only triggers an alarm after a new play starts. VBS, on the other hand, characterizes the
transition phases between plays, triggers an early alarm before the next play starts. It also shows
the difference between BOCD and VBS in changepoint detection: while BOCD only detects abrupt
changes, VBS detects gradual changes as well.

Practical Considerations of VBS and BOCD Using our variational inference extensions of BOCD,
we can overcome the inference difficulty of non-conjugate models. But, considering practical issues,
VBS is better in that the detected change points are easy to read from the binary change variable
values s1:t and free from post-processing – a procedure that BOCD has to exercise. BOCD often
outputs a sequence of run lengths either online or offline, among which the change points do not
always correspond to the time when the most probable run length becomes one. Instead, the run
length oftentimes is larger than one when change point happens. Then people have to inspect the
run lengths and set a subjective threshold to determine when a change point occurs, which is not
data-driven and may incur undesirable detection. For example, in our basketball player tracking
experiments, we set the threshold of change points to be 50; VBS, on the other hand, is free from
this post-process thresholding and provides multiple plausible, completely data-driven hypotheses of
change points.

Ablation Study of Beam Size The right plot and the table in Fig 6 shows, on the example trajectory,
the detected change points and the average log-likelihood as the beam size K changes. When K = 1,
VBS characterizes the trajectory where the velocity direction changes; when K = 3 or 6, it seems
that some parts where the velocity value changes are detected. We also observed that the average
predictive log-likelihood improves as K increases.

G Experiment Details and Results

In this section, we provide the unstated details of the experiments mentioned in the main paper.
These details include but are not limited to hardware infrastructure used to experiment, physical
running time, hyperparameter searching, data generating process, evaluation metric, additional results,
empirical limitations, and so on. The subsection order corresponds to the experiments order in the
main paper. We first provide some limitations of our methods during experiments.

Limitations Our algorithm is theoretically sound. The generality and flexibility renders a great per-
formance in experiments, however, at the expense of taking more time to search the hyperparameters
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Figure 7: One-step ahead performance of the online malware detection experiments. Proposed
methods outperform the baseline.

in a relatively large space. Specifically, there are two hyperparameters to tune: ξ0 and β. The grid
search over these two hyperparameters could be slow. When we further take into account the beam
size K, it adds more burden in parameter searching. But we give a reference scope to the tuning
region where the search should perform. Oftentimes, we use the same parameters across beam sizes.

G.1 An Illustrative Example

Data Generating Process To generate Figure 2 in the main paper, we used a step-wise function as
ground truth, where the step size was 1 and two step positions were chosen randomly. We sampled 30
equally-spaced points with time spacing 1. To get noisy observations, Gaussian noise with standard
deviation 0.5 was added to the points.

Model Parameters In this simple one-dimensional model, we used absolute broadening with a
Gaussian transition kernel K(zt, z

′
t) = N (zt−z′t, D∆t) where D = 1.0 and ∆t = 1. The inference

is thus tractable because p(zt|st) is conditional conjugate to p(xt|zt, st) (and both are Gaussian
distributed). We set the prior log-odds ϵ0 to log p(st=1)

p(st=0) , where p(st = 1) = 0.1. We used beam size
2 to do the inference.

G.2 Bayesian Linear Regression Experiments

We performed all linear regression experiments on a laptop with 2.6 GHz Intel Core i5 CPU. All
models on SensorDrift, Elec2, and NBAPlayer dataset finished running within 5 minutes. Running
time on Malware dataset varied: VCL, BF, and Independent task are within 10 minutes; VGS takes
about two and half hours; VBS (K=3) takes about six hours; VBS (K=6) takes about 12 hours. BOCD
takes similar time with VBS. The main difference between VCL’s computation cost and VBS’s
computation cost lies in the necessarity of inverting the precision matrix into covariance matrix.
However, the matrix inverse computation in VBS and BOCD can be substantially reduced from O(n3)
to O(n2) by the recursion of Sherman–Morrison formula; we will implement this in the future.

Problem Definitions We considered both classification experiments (Malware, Elec2) and regres-
sion experiments (SensorDrift, NBAPlayer). The classification datasets have real-value probabilities
as targets, permitting to perform regression in log-odds space.

Setup and Evaluation We defined each task to consist of a single observation. Models made
predictions on the next observation immediately after finishing learning current task. Models were
then evaluated with one-step-ahead absolute error14, which is then used to compute the mean
cumulative absolute error (MCAE) at time t: 1

t

∑t
i=1 |y∗i − yi| where y∗ is the predicted value and

yi is the ground truth. We further approximated the Gaussian posterior distribution by a point mass
centered around the mode. It should be noticed that for linear regression, the Laplace Propagation

14in probability space for classification tasks; in data space for regression tasks. With the exception of
NBAPlayer dataset, we evaluated models with predictive log probability 1

t

∑t
i=2 log p(yi|y1:i−1, x1:i).
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has the same mode as Variational Continual Learning, and the independent task has the same mode
as its Bayesian counterpart.

Results We reported the result of the dominant hypothesis of VBS with large beam size. Fig. G.2
shows MCAE over time for the first three datasets. Our methods remain lower prediction error of
all time while baselines are subject to strong fluctuations or inability to adapt to distribution shifts.
Another observation is that VBS with different beam sizes performed similarly in this case.

G.2.1 Baseline Hyperparameters

BOCD We only keep the top three or six most probable run length after each time step.

We tuned the hyperparameter λ in the hazard function, or the transition probability. λ−1 is searched
in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99}.

Malware selects λ−1 = 0.3; Elec2 selects λ−1 = 0.9; SensorDrift selects λ−1 = 0.6; NBAPlayer
selects λ−1 = 0.99.

BF We implemented Bayesian Forgetting according to [Kurle et al., 2020].

We tuned the hyperparameter β as the forgetting rate such that p(zt|Dt−1) ∝
p0(zt)

1−βqt−1(zt|Dt−1)
β where 0 < β < 1. β is searched in

{0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.97, 0.98, 0.99, 0.995, 0.999}.

Malware selects β = 0.999; Elec2 selects β = 0.98; SensorDrift selects β = 0.9; NBAPlayer selects
β = 0.9.

G.2.2 Malware15

Dataset There are 107856 programs collected from 2010.11 to 2014.7 in the monthly order. Each
program has 482 counting features and a real-valued probability p ∈ [0, 1] of being malware. This
ground truth probability is the proportion of 52 antivirus solutions that label malware. We used
the first-month data (2010.11) as the validation dataset and the remaining data as the test dataset.
To enable analytic online update, we cast the binary classification problem in the log-odds space
and performed Bayesian linear regression. We filled log-odds boundary values to be −5 and 4,
corresponding to probability 0 and 1, respectively. Our methods achieved comparable results reported
in [Huynh et al., 2017] on this dataset.

Hyperparameters We searched the hyperparameters σ2
n, ξ0 = log p0

1−p0
, and β using the valida-

tion set. Specifically, we extensively searched σ2
n ∈ {0.1, 0.2, · · · , 0.9, 1, 2, · · · , 10, 20, · · · , 100},

p0 ∈ {0.5}, β−1 ∈ {1.01, 1.05, 1.1, 1.2, 1.5, 2, 5}. On most values the optimization landscape is
monotonic and thus the search quickly converges around a local optimizer. Within the local optimizer,
we performed the grid search, which focused on β ∈ [1.05, 1.2].

We found all methods favored σ2
n = 40. And for VGS and VBS, the uninformative prior of the

change variable p0 = 0.5 was already a suitable one. VGS selected β−1 = 1.2, VBS (K=3) selected
β−1 = 1.07, and VBS (K=6) selected β−1 = 1.05. Although searched β−1 varies for different beam
size, the performance of different beam size in this case, based on our experience, is insensitive to the
varying β.

G.2.3 SensorDrift16

Dataset We focused on one kind of gas, Acetaldehyde, retrieved from the original gas sensor drift
dataset [Vergara et al., 2012], which spans 36 months. We formulated an regression problem of
predicting the gas concentration level given all the other features. The dataset contains 128 features
and 2926 samples in total. We used the first batch data (in the original dataset) as the validation set
and the others as the test set. Since the scales of the features vary greatly, we scaled each feature

15https://archive.ics.uci.edu/ml/datasets/Dynamic+Features+of+VirusShare+
Executables

16http://archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drift+Dataset+at+
Different+Concentrations
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with the sample statistics computed from the validation set, leading to zero mean and unit standard
deviation for each feature.

Hyperparameters We found that using a Bayesian forgetting module (instead of tempered posterior
module mentioned in the main paper), which corresponds to st = 1, works better for this dataset.
Since we scaled the dataset, we therefore set the hyperparameter σ2

n = 1 for all methods. We searched
ξ0 = log p0

1−p0
and β using the validation set. Specifically, we did the grid search for the prior prob-

ability of change point p ∈ {0.501, 0.503, 0.505, 0.507, 0.509, 0.511, 521, 0.55, 0.6, 0.7, 0.8, 0.9}
and the temperature β ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. The search procedure selects p = 0.507 and
β = 0.7 for all beam size K.

G.2.4 Elec217

Dataset The dataset contains the electricity price over three years of two Australian states, New
South Wales and Victoria [Harries and Wales, 1999]. While the original problem was 0-1 binary
classification, we re-produced the targets with real-value probabilities since all necessary information
forming the original target is contained in the dataset. Specifically, we re-defined the target to be
the probability of the price in New South Wales increasing relative to the price of the last 24 hours.
Then we performed linear regression in the log-odds space. We filled log-odds boundary values to be
−4 and 4, corresponding to probability 0 and 1, respectively. After removing the first 48 samples
(for which we cannot re-produce the targets), we had 45263 samples, and each sample comprised 14
features. The first 4000 samples were used for validation while the others were used for test.

Hyperparameters We searched the hyperparameters σ2
n, ξ0 = log p0

1−p0
, and

β using the validation set. Specifically, we extensively searched σ2
n ∈

{0.01, 0.02, · · · , 0.1, 0.2, · · · , 1, 2, · · · , 10, 20, · · · , 100}, p0 ∈ {0.5}, β−1 ∈
{1.05, 1.1, 1.2, 1.5, 2, 5}.

VCL favored σ2
n = 0.01, and we set this value for all other methods. VGS selected β−1 = 1.2. VBS

(K=3) and VBS (K=6) inherited the same β value from VGS.

G.2.5 NBAPlayer18

Dataset The original dataset contains part of the game logs of 2015-2016 NBA season in json files.
The log records each on-court player’s position (in a 2D space) at a rate of 25 Hz. We pre-processed
the logs and randomly extracted ten movement trajectories for training set and another ten trajectories
for test set. For an instance of the trajectory, we selected Wesley Matthews’s trajectory at the 292th
event in the game of Los Angeles Clippers vs. Dallas Mavericks on Nov 11, 2015. The trajectories
vary in length and correspond to players’ strategic movement. After extracting the trajectories, we fix
the data set and then evaluate all methods with it. Specifically, we regress the current position on the
immediately previous position–modeling the player’s velocity.

Hyperparameters We searched the hyperparameters σ2
n, ξ0 = log p0

1−p0
, and β using

the training set. Specifically, we searched σ2
n ∈ {0.001, 0.01, 0.1, 0.5, 1.0, 10., 100.}

and p ∈ {0.501, 0.503, 0.505, 0.507, 0.509, 0.511, 521, 0.55, 0.6, 0.7, 0.8, 0.9} and β ∈
{0.5, 0.6, 0.7, 0.8, 0.9}.

VCL favored σ2
n = 0.1, and we set this value for all other methods. VBS (K=1, VGS) selected

β = 0.5 and p = 0.513. VBS (K=3) selected p = 0.507 and β = 0.6. VBS (K=6) selected p = 0.505
and β = 0.7. In generating the plots on the example trajectory, we used p = 0.507 with varying β
and varying beam size K.

G.3 Bayesian Deep Learning Experiments

We performed the Bayesian Deep Learning experiments on a server with Intel(R) Xeon(R) Gold 5218
CPU @ 2.30GHz and Nvidia TITAN RTX GPUs. Regarding the running time, VCL, and Independent
task (Bayes) takes five hours to finish training; Independent task takes three hours; VGS takes two

17https://www.openml.org/d/151
18https://github.com/linouk23/NBA-Player-Movements
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Figure 8: (Bottom) Running test performance of our proposed VBS and VGS algorithms compared
to various baselines on transformed CIFAR-10 (left) and SVHN (right). (Top) Examples of transfor-
mations that we used for introducing covariate shifts.

Table 2: Convolution Neural Network Architecture

LAYER FILTER SIZE FILTERS STRIDE ACTIVATION DROPOUT

CONVOLUTIONAL 3× 3 32 1 RELU
CONVOLUTIONAL 3× 3 32 1 RELU
MAXPOOLING 2× 2 2 0.2
CONVOLUTIONAL 3× 3 64 1 RELU
CONVOLUTIONAL 3× 3 64 1 RELU
MAXPOOLING 2× 2 2 0.2
FULLYCONNECTED 10 SOFTMAX

GPUs and five hours; VBS (K=3) takes six GPUs and five hours; VBS (K=6) takes six GPUs and
10 hours. When utilizing multiple GPUs, we implemented task multiprocessing with process-based
parallelism.

Datasets with Covariate shifts We used two standard datasets for image classification: CIFAR-10
[Krizhevsky et al., 2009] and SVHN [Netzer et al., 2011]. We adopted the original training set
and used the first 5000 images in the original test set as the validation set and the others as the
test set. We further split the training set into batches (or tasks in the continual learning literature)
for online learning, each batch consisting of a third of the full data. Each transformation (either
rotation, translation, or scaling) is generated from a fixed, predefined distribution (see below for
Transformations) as covariate shifts. Changes are introduced every three tasks, where the total
number of tasks was 100.

Transformations We used Albumentations [Buslaev et al., 2020] to implement the transformations
as covariate shifts. As stated in the main paper, the transformation involved rotation, scaling, and
translation. Each transformation factor followed a fixed distribution: rotation degree conformed
to N (0, 102); scaling limit conformed to N (0, 0.32); and the magnitude of vertical and horizontal
translation limit conformed to Beta(1, 10), and the sampled magnitude is then rendered positive or
negative with equal probability. The final scaling and translation factor should be the corresponding
sampled limit plus 1, respectively.

Table 3: Hyerparameters of Bayesian Deep Learning Models for CIFAR-10

MODEL LEARNING RATE BATCH SIZE NUMBER OF EPOCHS β ξ0 OR λ−1 T

LP 0.001 64 150 N/A N/A N/A
BOCD 0.0005 64 150 N/A 0.3 20000
BF 0.0005 64 150 0.9 N/A 20000
VCL 0.0005 64 150 N/A N/A N/A
VBS 0.0005 64 150 2/3 0 20000
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Table 4: Hyperparameters of Bayesian Deep Learning Models for SVHN.

MODEL LEARNING RATE BATCH SIZE NUMBER OF EPOCHS β ξ0 OR λ−1 T

LP 0.001 64 150 N/A N/A N/A
BOCD 0.00025 64 150 N/A 0.3 20000
BF 0.00025 64 150 0.9 N/A 20000
VCL 0.00025 64 150 N/A N/A N/A
VBS 0.00025 64 150 2/3 0 20000

Architectures and Protocol All Bayesian and non-Bayesian methods use the same neural network
architecture. We used a truncated version of the VGG convolutional neural network (in Table 2)
on both datasets. We confirmed that our architecture achieved similar performance on CIFAR10
compared to the results reported by Zenke et al. [2017] and Lopez-Paz and Ranzato [2017] in a similar
setting. We implemented the Bayesian models using TensorFlow Probability and the non-Bayesian
counterpart (namely Laplace Propagation) using TensorFlow Keras. Every bias term in all the models
were treated deterministically and were not affected by any regularization.

We initialize each algorithm by training the model on the full, untransformed dataset. During every
new task, all algorithms are trained until convergence.

Tempered Conditional ELBO In the presence of massive observations and a large neural network,
posterior distributions of change variables usually have very low entropy because of the very large
magnitude of the difference between conditional ELBOs as in Eq. 6. Therefore change variables
become over confident about the switch-state decisions. The situation gets even more severe in
beam search settings where almost all probability mass is centered around the most likely hypothesis
while the other hypotheses get little probability and thereby will not take effect in predictions. A
possible solution is to temper the conditional ELBO (or the marginal likelihood) and introduce more
uncertainty into the change variables. To this end, we divide the conditional ELBO by the number
of observations. It is equivalent to set T = 20000 in Eq. 6. This practice renders every hypothesis
effective in beam search setting.

Hyperparameters, Initialization, and Model Training The hyperparameters used across all of the
models for the different datasets are listed in Tables 3 and 4. Regarding the model-specific parameters,
we set ξ0 to 0 for both datasets and searched β in the values {5/6, 2/3, 1/2, 1/4} on a validation set.
We used the first 5000 images in the original test set as the validation set, and the others as the test
set. We found that β = 2/3 performs relatively well for both data sets. Optimization parameters,
including learning rate, batch size, and number of epochs, were selected to have the best validation
performance of the classifier on one independent task. To estimate the change variable st’s variational
parameter, we approximated the conditional ELBOs 7 by averaging 10000 Monte Carlo samples.

As outlined in the main paper, we initialized each algorithm by training the model on the full,
untransformed dataset. The model weights used a standard Gaussian distribution as the prior for this
meta-initialization step.

When optimizing with variational inference, we initialized q(zt) to be a point mass around zero
for stability. When performing non-Bayesian optimization, we initialized the weights using Glorot
Uniform initializer [Glorot and Bengio, 2010]. All bias terms were initialized to be zero.

We performed both the Bayesian and non-Bayesian optimization using ADAM [Kingma and Ba,
2015]. For additional parameters of the ADAM optimizer, we set β1 = 0.9 and β2 = 0.999 for
both data sets. For the deep Bayesian models specifically, which include VCL and VBS, we used
stochastic black box variational inference [Ranganath et al., 2014, Kingma and Welling, 2014, Zhang
et al., 2018]. We also used the Flipout estimator [Wen et al., 2018] to reduce variance in the gradient
estimator.
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Figure 9: Dynamic Word Embeddings on Google books, Congressional records, and UN debates,
trained with VBS (proposed, colorful) vs. VCL (grey). In contrast to VCL, VBS reveals sparse,
time-localized semantic changes (see main text).

Predictive Distributions We evaluated the most likely hypothesis’ predictive posterior distribution
of the test set by the following approximation:

p(y∗|x∗,D1:t, s1:t) ≈
1

N

N∑
n=1

p(y∗|x∗, z(n)s1:t)

where N is the number of Monte Carlo samples from the variational posterior distribution q∗(zt|s1:t).
In our experiments we found S = 10 to be sufficient. We take arg maxyt

p(y∗|x∗, ,D1:t) to be the
predicted class.

LP only used the MAP estimation z∗t to predict the test set: p(y∗|x∗,D1:t) ≈ p(y∗|x∗, , z∗t ).

Standard Deviation in the Main Text Table 1 The results in this table were summarized and
reported by taking the average over tasks. Each algorithm’s confidence, which is usually evaluated by
computing the standard deviation across tasks in stationary environments, now is hard to evaluate due
to the non-stationary setup. These temporal image transformations will largely affect the performance,
leaving the blindly computed standard deviation meaningless since the standard deviation across
all tasks represents both the data transformation variation and the modeling variation. To evaluate
the algorithm’s confidence, we proposed a three-stage computation. We first segment the obtained
performance based on the image transformations (in our case, we separate the performance sequence
every three tasks). Then we compute the standard deviation for every performance segment. Finally,
we average these standard deviations across segments as the final one to be reported. In this way, we
can better account for the data variation in order to isolate the modeling variation.

Running Performance. We also reported the running performance for both our methods and some
baselines for each task over time (100 tasks in total) in Fig. 8. In the bottom panel, to account for
varying task difficulties, we show the percentage of the error reduction relative to VCL, a Bayesian
online learning baseline. Our proposed approach can achieve 10% error reduction most of the time on
both datasets, showing the adaptation advantage of our approach. The effect of beam search is also
evident, with larger beam sizes consistently performing better. The top panel shows some examples
of the transformations that we used for introducing covariate shifts manually.

G.4 Dynamic Word Embeddings Experiments

We performed the Dynamic Word Embeddings experiments on a server with Intel(R) Xeon(R) Gold
5218 CPU @ 2.30GHz and Nvidia TITAN RTX GPUs. Regarding the running time, for qualitative
experiments, Google Books and Congressional Records take eight GPUs and about 24 hours to finish;
UN Debates take eight GPUs and about 13 hours to finish. For quantitative experiments, since the
vocabulary size and latent dimensions are smaller, each model corresponding to a specific ξ0 takes
eight GPUs and about one hour to finish. When utilizing multiple GPUs, we implemented task
multiprocessing with process-based parallelism.

Data and Preprocessing We analyzed three large time-stamped text corpora, all of which are
available online. Our first dataset is the Google Books corpus [Michel et al., 2011] consisting of
n-grams, which is sufficient for learning word embeddings. We focused on the period from 1900
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Figure 10: Additional results of Dynamic Word Embeddings on Google books, Congressional records,
and UN debates.

Table 5: Hyperparameters of Dynamic Word Embedding Models

CORPUS VOCAB DIMS β LEARNING RATE EPOCHES ξ0 BEAM SIZE (K) T

GOOGLE BOOKS 30000 100 0.5 0.01 5000 -10 8 1
CONGRESSIONAL RECORDS 30000 100 0.5 0.01 5000 -10 8 1
UN DEBATES 30000 20 0.25 0.01 5000 -1 8 1

to 2000. To have an approximately even amount of data per year, we sub-sampled 250M to 300M
tokens per year. Second, we used the Congressional Records data set [Gentzkow et al., 2018], which
has 13M to 52M tokens per two-year period from 1875 to 2011. Third, we used the UN General
Debates corpus [Jankin Mikhaylov et al., 2017], which has about 250k to 450k tokens per year from
1970 to 2018. For all three corpora, the vocabulary size used was 30000 for qualitative results and
10000 for quantitative results. We further randomly split the corpus of every time step into training
set (90%) and heldout test set (10%). All datasets, Congressional Records19, UN General Debates20,
and Google Books21 can be downloaded online.

We tokenized Congressional Records and UN General Debates with pre-trained Punkt tokenizer
in NLTK22. We constructed the co-occurence matrices with a moving window of size 10 centered
around each word. Google books are already in Ngram format.

Model Assumptions As outlined in the main paper, we analyzed the semantic changes of individual
words over time. We augmented the probabilistic models proposed by Bamler and Mandt [2017] with
our change point driven informative prior (Eq. 3 in the main paper) to encourage temporal sparsity.
We pre-trained the context word embeddings23 using the whole corpus, and kept them constant
when updating the target word embeddings. This practice denied possible interference on one target
word embedding from the updates of the others. If we did not employ this practice, the spike and
slab prior on word i would lead to two branches of the “remaining vocabulary” (embeddings of
the remaining words in the vocabulary), conditioned either on the spike prior of word i or on the
slab prior. This hypothetical situation gets severe when every word in the vocabulary can take two
different priors, thus leading to exponential branching of the sequences of inferred change points.

19https://data.stanford.edu/congress_text
20https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/0TJX8Y
21http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
22https://www.nltk.org/
23We refer readers to [Mikolov et al., 2013, Bamler and Mandt, 2017] for the difference between target and

context word embeddings.

Table 6: ξ0 of Document Dating Tasks

CORPUS ξ0

GOOGLE BOOKS -1000000, -100000, -5120, -1280, -40
CONGRESSIONAL RECORDS -100000, -1280, -320, -40
UN DEBATES -128, -64, -32, -4
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When this interference is allowed, the exponential scaling of hypotheses translates into exponential
scaling of possible word embeddings for a single target word, which is not feasible to compute for
any meaningful vocabulary sizes and number of time steps. To this end, while using a fixed, pre-
trained context word embeddings induces a slight drop of predictive performance, the computational
efficiency improves tremendously and the model can actually be learned.

Hyperparameters and Optimization Qualitative results in Figure 9 in the main paper were
generated using the hyperparameters in Table 5. The initial prior distribution used for all latent
embedding dimensions was a standard Gaussian distribution. We also initialized all variational
distributions with standard Gaussian distributions. For model-specific hyperparameters β and ξ0,
we first searched the broadening constant β to have the desired jump magnitude observed from
the semantic trajectories mainly for medium-frequency words. We then tuned the bias term ξ0 to
have the desired change frequencies in general. We did the searching for the first several time steps.
We performed the optimization using black box variational inference and ADAM. For additional
parameters of ADAM optimizer, we set β1 = 0.9 and β2 = 0.999 for all three corpora. In this case,
we did not temper the conditional ELBO by the number of observations (correspondingly, we set
T = 1 in Eq. 6 in the main paper).

Quantitative results of VGS in Figure 2 (c) in the main paper were generated by setting a smaller
vocabulary size and embedding dimension, 10,000 and 20, respectively for all three corpora. We
used an eight-hypothesis (K=8) VBS to perform the experiments. Other hyperparameters were
inherited from the qualitative experiments except ξ0, whose values used to form the rate-distortion
curve can be found in Table 6. We enhanced beam diversification by dropping the bottom two
hypotheses instead of the bottom third hypotheses before ranking. On the other hand, the baseline,
“binning”, and had closed-form performance if we assume (i) a uniformly distributed year in which
a document query is generated, (ii) “binning” perfectly locates the ground truth episode, and (iii)
the dating result is uniformed distributed within the ground truth episode. The L1 error associated
with “binning” with episode length L is Et∼U(1,L),t′∼U(1,L)[|t− t′|] = L−1

2 . By varying L, we get
binning’s rate-distortion curve in Figure 2 (c) in the main paper.

Predictive Distributions In the demonstration of the quantitative results, i.e., the document dating
experiments, we predicted the year in which each held-out document’s word-word co-occurrence
statistics x have the highest likelihood and measured L1 error. To be specific, for a given document
in year t, we approximated its likelihood under year t′ by evaluating 1

|V | log p(xt|z∗t′), where z∗t′

is the mode embedding in year t′ and |V | is the vocabulary size. We predicted the year t∗ =

arg maxt′
1

|V | log p(xt|z∗t′). We then measured the L1 error by 1
T

∑T
i |ti−t∗i | given T truth-prediction

pairs.

G.4.1 Additional Results

Qualitative Results As outlined in the main paper, our qualitative result shows that the information
priors encoded with change point detection is more interpretable and results in more meaningful word
semantics than the diffusion prior of [Bamler and Mandt, 2017]. Here we provide a more detailed
description of the results with more examples. Figure 9 shows three selected words (“simulation”,
“atom”, and “race”–one taken from each corpus) and their nearest neighbors in latent space. As
time progresses the nearest neighboring words change, reflecting a semantic change of the words.
While the horizontal axis shows the year, the vertical axis shows the cosine distance of the word’s
embedding vector at the given year to its embedding vector in the last available year.

The plot reveals several interpretable semantic changes of each word captured by VBS. For example,
as shown by the most likely hypothesis in blue for the Congressional Records data, the term “atom”
changes its meaning from “element” to “nuclear” in 1945–the year when two nuclear bombs were
detonated. The word “race” changes from the cold-war era “arms”(-race) to its more prevalent
meaning after 1991 when the cold war ended. The word “simulation” changes its dominant context
from “deception” to “programming” with the advent of computers. The plot also showcases various
possible semantic changes of all eight hypotheses, where each hypothesis states various aspects.

Additional qualitative results can be found in Figure 10. it, again, reveals interpretable semantic
changes of each word: the first change of “computer” happens in 1940s–when modern computers
appeared; “broadcast” adopts its major change shortly after the first commercial radio stations were
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established in 1920; “climate” changes its meaning at the time when Intergovernmental Panel on
Climate Change (IPCC) was set up, and when it released the assessment reports to address the
implications and potential risks of climate changes.

Quantitative Results and Baseline Figure 2 (c) in the main paper shows the results on the three
corpora data, where we plot the document dating error as a function of allowed changes per year. For
fewer allowed semantic changes per year, the dating error goes up. Lower curves are better.

Now we describe how the baseline “Binning” was constructed. We assumed that we had separate
word embeddings associated with episodes of L consecutive years. For T years in total, the associated
memory requirements would be proportional to V ∗ T/L, where V is the vocabulary size. Assuming
we could perfectly date the document up to L years results in an average dating error of L

2 . We then
adjusted L to different values and obtained successive points along the "Binning" curve.
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